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We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE)
in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then
enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson
insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point
although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to
be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried,
respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture
related to the topological charges to better understand the underlying physical origin of the QAHE
Anderson localization.
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Introduction.—Anderson localization [1] is one of the
most striking transport phenomena in condensed matter
physics. It describes the absence of diffusion of waves due
to the severe interference from strong disorders. Based on
the scaling theory of localization length, it is known that
two-dimensional electrons can be immediately driven into
the Anderson insulating phase even in the presence of
extremely weak disorders [2]. However, if either the time-
reversal symmetry is broken by magnetic field or the spin-
rotational symmetry is broken by spin-orbit couplings, a
metal-insulator phase transition occurs [3–7], indicating the
emergence of a metallic phase at weak disorders.
When the applied magnetic field is strong enough, the

resulting Landau-level quantization gives rise to the for-
mation of the conventional quantum Hall effect (QHE)
[8,9], manifesting itself as vanishing longitudinal conduct-
ance but quantized Hall conductance. In the presence
of disorders, there were several different localization
mechanisms proposed for the quantum Hall effect, e.g.,
a levitation theory where extended levels float up to infinity
at weak magnetic field limit was used to show that the
phase transition can only occur in nearest-neighbor

quantum Hall plateaus, indicating that a high QHE state
can not directly transit into an insulator [10], while Sheng
et al. suggested that quantum Hall plateaus are destroyed in
a one-by-one order from high to low energies without
floating up in energy [11]. When interband mixing effect of
opposite chiralities is considered, metallic phase may exist
between adjacent quantum Hall plateaus or between the
QHE and Anderson insulator [12]. The successful exfolia-
tion of monolayer graphene [13] and realization of Z2

topological insulators [14,15] (both harbor linear-Dirac
dispersions) inspire a broad exploration of the quantum
anomalous Hall effect (QAHE) in related materials [16–29]
and finally lead to the first realization of the QAHE in
magnetically doped topological insulators [30–33], where
the QAHE exhibits the same transport properties as those in
the conventional QHE. The formation of QAHE usually
originates from the synergetic interaction between spin-
orbit coupling and intrinsic magnetization. Therefore, a
natural and fundamental question arises considering that
both the time-reversal and spin-rotational symmetries are
broken: How will the QAHE be localized in the presence of
strong disorders?
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In this Letter, we first investigate the transport properties
of the chiral edge states of the QAHE in the presence
of both nonmagnetic and spin-flip disorders. In the non-
magnetic case, for Fermi levels lying inside the band gap, the
conductance is quantized at weak disorders, gradually
decreases at moderate disorders, and finally vanishes at even
larger disorders,with the conductance at the charge neutrality
point EF=t ¼ 0.0 being always larger than that at any other
Fermi level. However, in the spin-flip case, when disorder
strength exceeds a critical value, the quantized conductance
at EF=t ¼ 0.0 abruptly vanishes, while the conductances at
other energies remain finite at even larger disorders.We then
show that this anomalous transport phenomenon in a meso-
scopic system can be attributed to the interchange of Berry
curvatures carried, respectively, by the conduction and
valence bands in the corresponding bulk system. Based on
the scaling theory of localization length, we provide a phase
diagram to show the insulator-metal and metal-insulator
phase transitions. At the end, a phenomenological picture is
given to understand the physical origin of phase transitions
from spin-texture evolutions.
Anomalous edge-state transport.—We start from a

prototypical system with a single massive Dirac fermion.
Its corresponding tight-binding Hamiltonian in square
lattices can be written as [34,35]

H ¼ −
ivF
2

X
i

ðc†i σxciþx̂ þ c†i σyciþŷ þ H:c:Þ
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where vF and λ are, respectively, Fermi velocity and
mass amplitude. t measures the nearest-neighbor hopping
energy. The first term can be considered as a spin-orbit
coupling term to form the Dirac dispersion. The second and
third terms are, respectively, spin-dependent and constant
mass terms, and their competition determines the Chern
number of the system. In our consideration, we choose
vF ¼ t and λ ¼ 1.2t to realize the QAHE, giving rise to a
quantized Hall conductance of σxy ¼ −e2=h. Anderson
disorders are included as HD ¼ P

iw
0
i c

†
i ci þ wx

i c
†
i σxciþ

wy
i c

†
i σyci, where the first term is the onsite nonmagnetic

disorder, and the last two terms describe spin-flip disorders.
w0;x;y are uniformly distributed in an interval of [−W=2,
W=2], with W characterizing the disorder strength.
The inset of Fig. 1(a) plots the band structure of a

nanoribbon of the QAHE system, where the ribbon width is
set to be N ¼ 80a (a is the lattice constant). The gapless
edge modes appear inside the bulk gap of ð−0.8t; 0.8tÞ and
exhibit a chiral propagating characteristic [39,40], with the
red and blue, respectively, indicating the counterpropagat-
ing edge modes along opposite boundaries. To explore
the disorder effects on the QAHE, we use a two-terminal
mesoscopic setup to study the averaged conductance hGi as
a function ofW. The disorders are only added in the central

N × N scattering region connecting with left and right
semi-infinite terminals. Using the Landauer-Büttiker for-
mula [41], the conductance G can be evaluated as

G ¼ e2

h
Tr½ΓLGrΓRGa�; ð2Þ

where Gr;a are, respectively, the retarded and advanced
Green’s functions of the disordered region, and ΓL;R are
the line-width functions coupling left and right terminals
with the central disordered region.
Since the conduction and valence bands are symmetric

about EF=t ¼ 0.0, we choose five representative Fermi
energies in our consideration, i.e., EF=t ¼ 0.0, 0.2, 0.4, 0.6,
and 0.8. Figure 1(a) displays the averaged conductance as a
function of W in the nonmagnetic case. At weak disorders,
the conductance keeps quantized at hGi ¼ 1.0e2=h. When
W > 2, all conductances begin to gradually decrease
with the increase of W. In particular, the conductance at
EF=t ¼ 0.0 is always larger than those at other energies,
which is rather reasonable because it requires much more
energy to be scattered into the bulk. However, in the spin-
flip case, the situation changes completely, with anomalous
transport phenomena being observed [see Fig. 1(b)]. For
example, at EF=t ¼ 0.0 the conductance keeps quantized
until the disorder reaches a critical strength WC=t ≈ 3.2,
and abruptly vanishes when W > WC. While for other
energies, the quantization of the conductance can be
destroyed by weak disorders (i.e., the farther away from
EF=t ¼ 0.0, the easier to be destroyed). However, the
conductance becomes finite in a wide range of disorder
strength. In contrast to the nonmagnetic disorder case, at
strong disordersW > WC, the closer of the Fermi energy to
EF=t ¼ 0.0, the easier of the quantization of conductance
to be destroyed. To uncover the fundamental physics that
results in these anomalous transport properties, we analyze
the Berry curvature density in the corresponding bulk

FIG. 1. Averaged conductance hGi as a function of W for
different Fermi energies inside the bulk gap. The system width is
set to be N ¼ 80a. (a) and (b) For nonmagnetic and spin-flip
disorders, respectively. Over 3000 samples are collected for each
point. Inset: Band structure of a nanoribbon displaying the
gapless chiral edge states inside the bulk gap Δ.
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system that reflects the nature of the anomalous Hall effect
[42], and employ the finite-size scaling theory [2] to
determine the disorder-induced phase transitions.
Berry curvature analysis.—In our system that features a

single gapped Dirac cone at low energy, it is known that the
Berry curvature has a peaked distribution about the cone
center, contributing to a half-quantized Hall conductance,
i.e., σxy ¼ − 1

2
sgnðλÞe2=h, which is impossible in a non-

interacting electronic system. Therefore, the remaining
bands must contribute another half-quantized Hall con-
ductance as that from the massive Dirac bands in our
considerations [43]. All these are well defined in the
absence of disorder, since the Berry curvature from the
“massive Dirac bands” is peaked in k space and can be
separated from the “remaining bands.” However, when
disorder is introduced, one can no longer visualize the
k-space Berry curvature distribution. Instead, we track its
distribution in energy by using the disorder averaged Berry
curvature and Hall conductance, which can be respectively
expressed as [44]

Ωα ¼ −
X
β≠α

2Imhαjvxjβihβjvyjαi
ðωβ − ωαÞ2

; ð3Þ

σxy ¼ −
e2

h

Z
dεhΩðεÞifðεÞ; ð4Þ

where jαi indicates the eigenenergy of jℏωαi in the disor-
dered system, and ΩðεÞ ¼ ð1=AÞTr½Ω̂δðε − ĤÞ� describes
the Berry curvature density in the energy spectrum with Ω̂
being the Berry curvature operator Ω̂ ¼ P

αΩαjαihαj,
and A is the area of the two-dimensional system.
Figure 2 displays the averaged Berry curvature density

and Hall conductance as functions of energy E=t for
different spin-flip disorder strengths W=t ¼ 0.0, 0.2, 1.0,
1.8, 2.6, 3.0, 3.4, and 4.2. At W=t ¼ 0.0, although it is
impossible to draw a precise separation between the
massive Dirac band and the remaining band contributions,
by carefully choosing the parameters as used in our
consideration we make the two contribution peaks to be
separated in either valence or conduction bands [see Fig. 2
(a1)], which can be generally identified as the contributions
from both the massive Dirac bands (labeled as pv;c

D ) and the
remaining bands (labeled as pv;c

R ), where vðcÞ denotes
valence (conduction) bands and DðRÞ denotes the Dirac
(remaining) bands. For energies inside the gap, ΩðEÞ ¼ 0,
and σxy ¼ −e2=h. When a weak disorder is applied, the
bulk gap is nearly unaffected, but the peak pv;c

D from the
Dirac bands becomes rather singular [see Fig. 2(a2)],
agreeing with the previous finding reported in Ref. [44].
At moderate disorder strengths as shown in Figs. 2(b)–2(e),
one can see that (1) The peaks pv;c

D become slightly
broadened and move towards each other between conduc-
tion and valence bands in an attractive manner, shrinking
the bulk gap, (2) the green and pink colored areas covered

by the peaks pv;c
D are approximately constants, correspond-

ing to σxy ≈�0.5e2=h, and (3) the peaks pv;c
R also broaden

but move farther away from each other in a repulsive
manner. Note that, before the bulk gap closing, the
quantized Hall conductance at EF ¼ 0 is most robust
against disorders.
When the disorder strength approaches a certain critical

value, i.e., W=t ≈ 3.0, the Berry curvatures from both
valence and conduction bands become overlapped, closing
the bulk gap as displayed in Fig. 2(f). We find that the Hall
conductance at E=t ¼ 0 suddenly increases, faster than
those at other energies. At even stronger disorders, e.g.,
W=t ¼ 4.2, one can see that the two peaks pv;c

D from the
conduction and valence bands make an interchange,
accompanied with a bulk gap reopening that is also
confirmed from the band structure calculation [35].
When the bulk gap is reopened, the Hall conductance
becomes exactly zero, i.e., σxy ¼ 0. Based on our

FIG. 2. (a1)–(h1): Evolution of averaged Berry curvature
density Ω as a function of energy E for different disorder
strengths W. The green and pink areas highlight the exchange
process of Berry curvatures carried, respectively, by conduction
and valence bands. (a2)–(h2): Corresponding averaged Hall
conductance σxy as a function of energy E. The supercell is
set to be 50a × 50a. Over 30 samples are collected for each point.
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integration, the Berry curvatures in the green- or pink-
colored regions contribute to a Hall conductance of about
−=þ 0.5e2=h. Therefore, we conclude that it is the
interchange of Berry curvatures, carried respectively by
the massive Dirac bands from the conduction and valence
bands, that leads to the compensation of the Berry
curvatures carried by the remaining bands, which is a
necessary condition to eliminate the net Berry curvature
integration below the Fermi level and finally lead to the
Anderson localization. By considering various system
parameters, we show that it is universal to achieve the
anomalous electronic transport and Berry-curvature inter-
change induced metallic phase for QAHE systems
subjected to spin-flip disorders [35]. We believe that the
Berry curvature interchange should be closely related to the
anomalous transport properties displayed in Fig. 1(b).
Phase transitions.—In order to provide a convincing

picture of the phase transitions from the QAHE to
Anderson insulator, it is rewarding to employ the finite-size
scaling approach to determine the phase boundaries. Based
on the well-established transfer-matrix method [45,46], we
numerically calculate the localization length ξ on a quasi-
one-dimensional bar of essentially infinite length (2 × 106)
and finite width L. The periodical condition is applied to
eliminate the possible edge-state transport. As an example,
in Fig. 3(a) we plot the normalized localization length ξ=L as
a function ofW=t atEF=t ¼ 0.0 for different widthsL ¼ 32,
48, 64, and 96. One can find that there are two fixed points,
Wc1 ¼ 3.18 and Wc2 ¼ 3.23. At W < Wc1, ξ=L decreases
with the increase of L, indicating that ξ=L will converge to
zero when L → ∞, signaling a localized insulating phase,
i.e., the QAHE insulating phase. At W ∈ ½Wc1;Wc2�, ξ=L
increases with the increase of L, indicating that ξ=L will
diverge when L → ∞, signaling a delocalized metallic
phase. AtW > Wc2, ξ=L behaves similar to that in the weak
disorder case, meaning that it enters a localized insulating
phase (Anderson insulator). Therefore, the fixed pointsWc1

andWc2 are two critical disorder strengths for the insulator-
metal and metal-insulator phase transitions, respectively.
After obtaining the two critical disorder strengthsWc1 and

Wc2 for other representing Fermi energies inside the bulk
gap, a phase diagram in the (E,W) plane can be determined
[Fig. 3(b)], which is also confirmed from the conductance
calculation [35]. At weak disorders, the QAHE phase is
robust against disorders, and the charge neutrality point
EF=t ¼ 0.0 is most robust. However, at even stronger
disorders, it is the charge neutrality point that first enters
the Anderson insulating phase from a delocalized metallic
phase. This anomalous feature of broadening the metallic
phase associated with the Fermi-level shift from EF=t ¼ 0.0
is exactly the fundamental physical origin of the anomalous
findings in the above two-terminal conductance calculation
[see Fig. 1(b)] and Hall conductance calculation in a finite-
sized supercell [see Figs. 2(f2) and 2(g2)].
A phenomenological picture.—We now provide a phe-

nomenological picture to better explain the above observed
anomalous transport findings and unusual phase diagram.
From the topological point of view, the topological order of
the quantized Hall conductance can also be described by
using the concept of topological charge, which is dependent
on the spin textures [47]. In our consideration, the quan-
tized Hall conductance of σxy ¼ −e2=h is analogous to a
Skyrmion, where the valence or conduction bands carry a
topological charge of Qv=c ¼ −=þ 1, which can be
reflected from the spin-textures as schematically displayed
in Fig. 4(a): spins pointing outwards for Qc ¼ þ1 (i.e.,
spins point upwards at the north pole, downwards at the

FIG. 3. (a) Normalized localization length ξ=L as a function of
the disorder strength W at EF ¼ 0.0 calculated on quasi-one-
dimensional bars, with a length of 2 × 106 and different widths of
L ¼ 32, 48, 64, and 96. Wc1 ¼ 3.18 and Wc2 ¼ 3.23 are two
critical points. (b) Phase diagram in (E, W) plane.

FIG. 4. Schematic of the evolution of topological charges carried
by the spin textures (i.e., Skyrmions andmerons) of thevalence and
conduction bands. (a) In the absence of disorders, valence or
conduction bands carry a Skyrmion with a topological charge of
Qv ¼ −1=Qc ¼ þ1. (b) At weak disorders, the states near the
equator of Skyrmions scatter strongly to divide Skyrmions into
merons that carry half-integer topological charges and are labeled
as “A,” “B,” “C,” and “D.” (c) By further increasing disorder
strength, merons A and D respectively move upwards and down-
wards, while meronsB andCmove towards each other. (d) At even
stronger disorders, merons B and C make an exchange to cancel
out the topological charges in the new valence (conduction) bands
by combing merons A and C (B and D).
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south pole, and in-plane at the equator), but spins pointing
inwards for Qv ¼ −1 (i.e., spins point downwards at the
north pole, upwards at the south pole, and in-plane at
the equator). When the spin-flip disorders are applied, the
electronic states near the equator scatter strongly due to the
coexistence of different spins, while those at the south and
north pole are nearly inactive because of the absence of
allowed states with opposite spin. This results in the
separation of Skyrmions into merons (labeled as “A”,
“B”, “C” and “D”) with �1=2 topological charges as
labeled in Fig. 4(b). With the increase of disorder strength,
merons B and C move towards each other in an attractive
manner, while merons A andDmove in a repulsive manner
as displayed in Fig. 4(c). Note that, at certain disorder
strength, merons B and C become spatially overlapped, but
no scattering occurs because they are not allowed to scatter
between the same spins, which explains the formation of
the Berry-curvature mediated metallic phase in Fig. 3. At
even larger disorder strength, merons B and C move,
respectively, into the valence and conduction bands. At this
point, the topological charges carried by the occupied
valence bands become zero, leading to the vanishing of
Hall conductance and the occurrence of Anderson localiza-
tion, which can clearly explain the sudden vanishing of the
two-terminal conductance and why the charge neutrality
point enters the Anderson insulator first. For high-Chern-
number QAHE systems, the meron exchange picture would
bemore complicated and highly depend on themodel details
[35], which is out of scope of the current work.
Conclusions.—In summary, we theoretically study the

disorder effect of the QAHE system in the presence of spin-
flip disorders. We show that the system first transitions into
a metallic phase from the QAHE insulating phase at
moderate disorder strengths, and then further transitions
into the Anderson insulating phase. Counterintuitively, we
find that it is the charge neutrality point (i.e., EF=t ¼ 0),
at which the quantized Hall conductance is most robust
against weak disorders but the corresponding metallic phase
is easiest to be completely localized into the Anderson
insulatingphase.Byanalyzing theBerry curvature evolution,
we find that the resulting anomalous electronic transport and
Anderson localization at the charge neutrality point originate
from the interchange of Berry curvatures carried, respec-
tively, by the valence and conduction bands. The finite-size
localization length scaling approach is used to determine the
phase boundaries separating the three phases: QAHE insu-
lating phase, Berry-curvature mediated metallic phase, and
the Anderson insulating phase. In the end, a phenomeno-
logical picture from the topological charges is given to
explain the anomalous electronic transport and Anderson
localization at the charge neutrality point.
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